

SDK for
UniversalPlantViewer

Manual

Copyright

Copyright © 2018 CAXperts GmbH. All Rights Reserved.

Including software, file formats, and audio-visual displays; may be used pursuant to applicable

software licence agreement; contains confidential and proprietary information of CAXperts and/or

third parties which is protected by copyright law, trade secret law, and international treaty, and may

not be provided or otherwise made available without proper authorisation.

Restricted Rights Legend

Rights reserved under the copyright laws of the Federal Republic of Germany.

Warranties and Liabilities

All warranties given by CAXperts about equipment or software are set forth in your purchase contract,

and nothing stated in, or implied by, this document or its contents shall be considered or deemed a

modification or amendment of such warranties. CAXperts believes the information in this publication

is accurate as of its publication date.

The information and the software discussed in this document are subject to change without notice

and are subject to applicable technical product descriptions. CAXperts is not responsible for any error

that may appear in this document.

The software discussed in this document is furnished under a licence and may be used or copied only

in accordance with the terms of this licence. THE USER OF THE SOFTWARE IS EXPECTED TO MAKE

THE FINAL EVALUATION AS TO THE USEFULNESS OF THE SOFTWARE IN HIS OWN ENVIRONMENT.

Trademarks

CAXperts is a registered trademark of CAXperts GmbH. Intergraph, the Intergraph logo, SmartSketch,

FrameWorks, SmartPlant, INtools, MARIAN, PDS, IGDS, RIS and IntelliShip are registered trademarks

of Intergraph Corporation. IGDS file formats ©1987-1994 Intergraph Corporation. Microsoft and

Windows are registered trademarks of Microsoft Corporation. Bentley, the Bentley logo “B,” and

MicroStation are registered trademarks of Bentley Systems, Inc. ISOGEN is a registered trademark of

Alias Limited. Autodesk and Navisworks are registered trademarks or trademarks of Autodesk, Inc.,

in the USA and other countries. Other brands and product names are trademarks of their respective

owners.

Table of Contents

I. Introduction ... 3

II. Setup .. 3

III. Licence ... 4

Site licence (local)

Floating (server) licence

IV. Working with SDK for UniversalPlantViewer
Builder .. 6

Creating plugins

Prerequisites for debugging

V. Contact ... 12

Helpdesk

SDK FOR UNIVERSALPLANTVIEWER - NOVEMBER 2018 3

Introduction

SDK for UniversalPlantViewer Builder allows you to create custom plugins, which will be executed by

the UniversalPlantViewer Builder. With those plugins you can create new, or read, update and delete

existing attributes and graphics.

Setup

Requirements:

• Hardware (minimum):

o CPU: double-core, 2.5 GHz

o RAM: 3 GB

• Hardware (recommended):

o CPU: quad-core, >=3.4 GHz

o RAM: >=8GB

o OS, %TEMP%, input and output folders on SSD

o Full HD resolution

• Supported operating systems:

o Microsoft Windows 7-10

• Microsoft .NET Framework 4.0

Administrator rights are required on each computer to install CAXperts SDK for UniversalPlantViewer.

“Run as” is not supported.

Uninstall

To uninstall the software, select Control panel from the start menu. Then on large or small icon view,

click Programs and features. If you are using category view, under Programs, click Uninstall a

program.

Select the program you want to remove, and click Uninstall/Remove. Alternatively, right-click the

program and select Uninstall.

Setup command line (for administrators)

The following command line options are supported by the installer:

/S:<<optional ini file>>

Allow an install to be run in silent mode. As a result, no screens or dialogs will be shown.

This command line option also has an optional INI file that can be passed containing session variable

values. For example:

"C:\output\setup.exe" "/S:C:\setupvars.ini"

SDK FOR UNIVERSALPLANTVIEWER - NOVEMBER 2018 4

This will cause the session variables in the INI file to be used for the setup. The INI file should be in

the format:

[SetupValues]

%AppFolder%=C:\Program Files\MyProduct

/U:<<XML config file>>

This command line option must be used when calling the uninstall program from the command line.

This command also has an optional XML file that can be passed containing session variable values.

For example:

"C:\Program Files\MyProduct\uninstall.exe" "/U:C:\Program Files\MyProduct\irunin.x

ml"

Licence

A UniversalPlantViewer API licence is required to run this product.

CAXperts software supports two types of licences:

Site licence (local)

Domain based licences are restricted to machines within a 5 miles (8 kilometres) radius at a specific

geographic location (building) for which the licence key file was issued for. There is no limitation

regarding the number of users or machines.

CAXperts will need your Current domain name to issue a licence file (.lic).

The licence file has to be stored on a local or network location accessible by the machine running the

CAXperts product; a licence server is not required.

The location of the licence file should be defined on every machine with the CAXperts product

installed, which can be done

• Either by setting the environment variable

CAXPERTS_LICENSE_FILE=C:\Program Files (x86)\CAXperts\Licensing\

• Or by setting the registry key

HKEY_CURRENT_USER\Software\FLEXlm License

Manager\CAXPERTS_LICENSE_FILE=C:\Program Files (x86)\CAXperts\Licensing\

Multiple licence key file locations should be separated by semicolons (“;”).

If the licence key file location is not defined, “C:\Program Files (x86)\CAXperts\Licensing\” is used

The licence key file may be renamed (including the extension). The CAXperts product will check the content of all

files in the licence folder(s) for valid keys.

Changes to the key path (in the environment variable or registry key) are read during the next start of the

CAXperts product.

SDK FOR UNIVERSALPLANTVIEWER - NOVEMBER 2018 5

Floating (server) licence

Floating licences require a FlexNET server (lmadmin or lmgrd) accessible by the machine running the

CAXperts product. The licence key file is typically located on the FlexNET server machine. The licence

key file defines the maximum number of seats which can be used at the same time.

Every running instance of the CAXperts software product will require one seat, no matter if the application is

running multiple times on the same or different machine(s).

New instances can only be started as long as seats are available and the FlexNET server is

accessible.

The location of the licence server must be defined on every machine with the CAXperts product

installed, which can be done

• Either by setting the environment variable

CAXPERTS_LICENSE_FILE=@YourServerName

• Or by setting the registry key

HKEY_CURRENT_USER\Software\FLEXlm License

Manager\CAXPERTS_LICENSE_FILE=@YourServerName

Every computer name must be preceded by the @ symbol. Multiple licence server locations should be

separated by semicolons (“;”).

YourServerName is the Windows computer name of the machine running lmadmin (FlexNET server).

If lmadmin is running on a non-default port, the port number should be defined like this: port@

YourServerName.

Changes to the server path (in the environment variable or registry key) are read during the next start of the

CAXperts product.

Borrowed licences

Licence seats can be borrowed for a period of time from the server and saved to the local machine.

Once the seat has been borrowed the CAXperts application can be used without any connection to the

FlexNET server.

To borrow a licence seat press the Borrow seat button, define the loan period (up to 7 days) and press

OK. When the borrowed seat expires it gets automatically returned back to the FlexNET server.

SDK FOR UNIVERSALPLANTVIEWER - NOVEMBER 2018 6

The seat can be returned earlier by pressing the Return borrowed seat button.

Without a valid licence file the software will run in demo mode.

Working with SDK for UniversalPlantViewer Builder

Creating plugins

In order to develop a custom plugin, you first need to reference the

“UniversalPlantViewerBuilderPlugin.dll” file in your plugin project. Your custom plugin class must

implement the interface “IPluginVersion1” and its method “BeforeExport”. This method is then called

by the UniversalPlantViewer Builder. The “PreExportHook” that is passed in as a parameter into the

“BeforeExport” method, is the single entry-point which contains various accessors and methods to

create or modify attributes and graphics on the fly (see API documentation for details).

Prerequisites for debugging

If you want to debug your custom plugin, you have to adjust both the “Start Action” as well as the

“Build Events” of your project:

Start action

Here you have to enter the path to your “UniversalPlantViewer Builder” executable file, i.e. “%Program

Files%\CAXperts\UniversalPlantViewer Builder\UniversalPlantViewer Builder.exe”

Build events

Under Post-Build Events please enter the following:

SDK FOR UNIVERSALPLANTVIEWER - NOVEMBER 2018 7

COPY /Y “$(TargetPath)” “%AppData%\CAXperts\UniversalPlantViewer Builder\Plugins”

Background: The UniversalPlantViewer Builder will execute every DLL which can be found in the

“%AppData%\CAXperts\UniversalPlantViewer Builder\Plugins” directory.

Dependencies

If your plugin requires any third party dependencies or other DLL files, you have to place them inside a

libs folder next to your custom plugin DLL files.

Running your plugins

Once you have deployed your custom plugin DLLs to the folder where the SDK will look for plugins

“%AppData%\CAXperts\UniversalPlantViewer Builder\Plugins”, you can select the plugins which

should be executed in the Settings - Plugins tab:

API

The various accessors below can be reached through the “PreExportHook” object that is passed in as

a parameter in the “BeforeExport” method. The “BeforeExport” method is the single entry point for a

custom plugin. A plugin class must implement the interface “IPluginVersion1” and its method

“BeforeExport”. This method is then called by the SDK in the UniversalPlantViewer Builder.

BuilderContext

The builder context is used for logging information to the UniversalPlantViewer Builder output file.

SDK FOR UNIVERSALPLANTVIEWER - NOVEMBER 2018 8

void Log(string message)

Prints a message to the UniversalPlantViewer Builder output file. Requires a string message that

should be logged to the output file as a parameter and returns void.

void LogError(string message, Exception e)

Prints a message and an exception to the UniversalPlantViewer Builder output file. Requires a string

message and an exception object as parameters and returns void.

void CancelExecution()

Throws a new CanceledExecutionException.

void CancelExecution(string message)

Throws a new CanceledExecutionMessage with the message. Requires the string message as

parameter.

BuilderElementAccessor

This accessor contains methods for accessing elements and session objects.

IEnumerable<ISession> Sessions { get; }

This property is used to get the available session objects. Returns an IEnumerable of ISession

interfaces.

IEnumerable<IElement> IterateElements()

Iterates over all elements and returns an IEnumerable of IElement.

IElement GetElement(Guid uid)

Access a single element by its uid. Requires the uid as parameter and returns either the found

element or null if no element was found.

IElement CreateElement(Guid uid, ISession session)

Create a new builder element. Requires a an uid and a session object as parameters and returns the

newly created element.

void DeleteElement(Guid uid, ISession session)

Completely deletes an existing element including all its attributes and graphics. Requires the uid and

the session object of the element as parameters and returns void.

BuilderAttributeAccessor

Contains various methods to interact with attributes.

IEnumerable<string> IterateAttributes()

Iterate over all attribute keys. Returns an IEnumerable of strings.

IEnumerable<IElement> FindElementsByAttributes(string conditionQuery)

Find all elements by a certain condition. Requires the query condition string as a parameter and

returns an IEnumerable of IElement. The query condition is of the following form: “Name=Value”.

Several conditions can be combined with an “&” character.

SDK FOR UNIVERSALPLANTVIEWER - NOVEMBER 2018 9

void RenameAttribute(string originalName, string newName)

Change an attribute key for all elements. Requires the old and new attribute key as parameters.

Returns void.

void DeleteAttribute(string name)

Completely removes an attribute. Requires the attributes name as parameter and returns void.

IDictionary<string, string> GetAttributes(IElement element, HashSet<string> attributes = null)

Gets all attributes for a specific element. Requires the element as parameter and returns a dictionary

of attributes. Optionally, a hash set with the attribute keys to extract could be passed as a second

parameter.

void AddAttribute(IElement element, string name, string value)

Adds a new attribute to an existing element. The required parameters are the element, the attribute

name and value. Returns void.

void UpdateAttribute(IElement element, string name, string value)

Updates an existing attribute of an element. The required parameters are the element, the attribute

name and value. Returns void.

void RenameAttribute(IElement element, string oldName, string newName)

Renames an existing attribute of an element. The required parameters are the element, the old

attribute name and the new attribute name. Returns void.

void DeleteAttribute(IElement element, string name)

Removes an existing attribute of an element. Requires the element and the attributes name as

parameters. Returns void.

BuilderGraphicAccessor

Contains various methods for getting, creating and changing graphics.

ISessionTransformation GetSessionTransformation(ISession session)

Returns the transformation information for the corresponding session object. Requires the session

object as input parameter.

IEnumerable<string> GetAspects()

Access all available aspects. Returns an IEnumerable of strings.

void CreateAspect(string aspectName)

Creates a new aspect. Requires the new aspect name as parameter. Returns void.

void DeleteAspect(string aspectName)

Deletes an existing aspect. Requires the aspect name as input and returns void.

IEnumerable<IGraphicElement> GetGraphics(IElement element)

Get all graphic objects of an element. Returns an IEnumerable of graphic elements. Requires the

element as input parameter.

SDK FOR UNIVERSALPLANTVIEWER - NOVEMBER 2018 10

IGraphicElement CreateGraphic(IElement element, string aspectName, IEnumerable<string> primitives)

Create a new graphic. The required parameters are the element, the aspect name and the primitives.

Returns the newly created graphic element.

IEnumerable<string> GetPrimitives(IGraphicElement graphicElement)

Access the primitives of a certain graphic element. Returns an enumerable of strings.

void SetPrimitives(IGraphicElement graphicElement, IEnumerable<string> primitives)

Sets the primitives for a certain graphic element. Required parameters are the graphic element and

the new primitives. Returns void.

void SetColor(IGraphicElement graphicElement, Color color)

Change the color of a graphic element. Paramters are the graphic element and the new color. Returns

void.

BuilderLinkAccessor

Used to attach links to elements.

ILink CreateLink(string url, Color color, string name = null, LinkType type = LinkType.Default)

Create a new link. Use the returned identifier to register elements to the link.

void AddRelation(ILink link, IElement element)

Register an element to the link.

BuilderDocumentAccessor

Contains methods to register and link documents with elements.

IDocument CreatePdf(byte[] fileContent, string name, string treePath)

Register a new pdf file which will be written to the general output location.

void AddRelation(IDocument document, IElement element)

Link an element to a created document.

BuilderIntelliPidElementAccessor

This accessor contains methods for accessing IntelliPid elements and session objects.

IEnumerable<ISession> Sessions { get; }

This property is used to get the available session objects. Returns an IEnumerable of ISession

interfaces.

IEnumerable<IIntelliPidElement> IterateElements()

Iterates over all elements and returns an IEnumerable of IIntelliPidElement.

IIntelliPidElement GetElement(Guid uid)

Access a single element by its uid. Requires the uid as parameter and returns either the found

element or null if no element was found.

SDK FOR UNIVERSALPLANTVIEWER - NOVEMBER 2018 11

BuilderIntelliPidAttributeAccessor

Contains various methods to interact with IntelliPid attributes.

IEnumerable<string> IterateAttributes()

Iterate over all IntelliPid attribute keys. Returns an IEnumerable of strings.

IEnumerable<IIntelliPidElement> FindElementsByAttributes(string conditionQuery)

Find all IntelliPid elements by a certain condition. Requires the query condition string as a parameter

and returns an IEnumerable of IIntelliPidElement. The query condition is of the following form:

“Name=Value”. Several conditions can be combined with an “&” character.

void RenameAttribute(string originalName, string newName)

Change an IntelliPid attribute key for all IntelliPid elements. Requires the old and new attribute key as

parameters. Returns void.

void DeleteAttribute(string name)

Completely removes an IntelliPid attribute. Requires the attributes name as parameter and returns

void.

IDictionary<string, string> GetAttributes(IIntelliPidElement element, HashSet<string> attributes = null)

Gets all IntelliPid attributes for a specific IntelliPid element. Requires the IntelliPid element as

parameter and returns a dictionary of attributes. Optionally, a hash set with the attribute keys to

extract could be passed as a second parameter.

void AddAttribute(IIntelliPidElement element, string name, string value)

Adds a new attribute to an existing IntelliPid element. The required parameters are the IntelliPid

element, the attribute name and value. Returns void.

void UpdateAttribute(IIntelliPidElement element, string name, string value)

Updates an existing attribute of an IntelliPid element. The required parameters are the IntelliPid

element, the attribute name and value. Returns void.

void RenameAttribute(IIntelliPidElement element, string oldName, string newName)

Renames an existing attribute of an IntelliPid element. The required parameters are the IntelliPid

element, the old attribute name and the new attribute name. Returns void.

void DeleteAttribute(IIntelliPidElement element, string name)

Removes an existing attribute of an IntelliPid element. Requires the element and the attributes name

as parameters. Returns void.

SDK FOR UNIVERSALPLANTVIEWER - NOVEMBER 2018 12

Contact

Contact CAXperts’ support by email, online, or phone:

CAXperts GmbH

Carl-Zeiss-Ring 4

85737 Ismaning

Germany

https://www.caxperts.com/contact/

Phone: +49 (89) 969772-0

Email: info@caxperts.com

Helpdesk

Available Monday to Friday 08.00 a.m. – 5.00 pm (UTC +1)

Phone: +49 (89) 969772-250

support@caxperts.com

